
Published in the Proceedings of the
International ICSC/IFAC Symposium on
Neural Computation (NC’98)
Vienna, 1998
ISBN # 3-906454-15-0
An Addition to Backpropagation for Computing Functional Roots

Lars Kindermann

FORWISS - Bavarian Research Center for Knowledge-Based Systems
Am Weichselgarten 7, 91058 Erlangen, Germany

email: lars.kindermann@forwiss.de
http://www.forwiss.de/~kinderma
lly
ts
y

ld

re

.

al
al
the
s.

o-

fa-
n,

s
n

il-

ute
-

Abstract

Many processes are composed of a n-fold repetition of
some simpler process. If the whole process can be mod-
eled with a neural network, we present a method to derive
a model of the basic process, too, thus performing not
only a system-identification but also a decomposition
into basic blocks. Mathematically this is equivalent to the
problem of computing iterative or functional roots: Given
the equationF(x)=f(f(x)) and an arbitrary functionF(x)
we seek a solution forf(x). A special topology of multi-
layer perceptrons and a simple addition to the delta rule
of backpropagation will allow most NN tools to compute
good approximations. Applications range from data anal-
ysis within chaos theory to the optimization of industrial
processes, where production lines like steel mills often
consist of several identical machines in a row.

1 Functional Roots or
Fractional Iterations

The concept of the well known square root of a real num-
ber can easily be extended to functions. This is an impor-
tant part of the theory offunctional equations.

1.1 Definition

Given an arbitrary function : , the function
 with

(1)

is called afunctionalor iterative root of .

Also higher order roots can be defined. For

(2)

the function is ak-th iterative root of .

Some simple examples:

(3)

The last equation can probably not be solved analytica
in a closed form. But it can be shown that iterative roo
of all orders exist for at least all continuous and strictl
increasing real valued functions [1].

However, some regularization may be necessary to yie
unique solutions. In higher dimensions for
the existence of cannot be guaranteed. But the
may be found “near fits”, either

 with (4)

or

 with (5)

or a mix of both, depending on the desired application

Finding functional roots can also be considered as thein-
verse problem of iteration: If is thek-th iterationof ,
 is thek-th fractional iteration of .

1.2 Sample Applications

There are many problems, both from theory and practic
applications, which can be related to solving function
roots. Here we present two examples to demonstrate
usefulness of this concept apart from pure mathematic

1.2.1 Chaos Theory

Iterated functions play a key role in chaos theory. The l
gistic equation

(6)

generates chaotic sequences for and the
mous Mandelbrot-set results from the same iteratio
only with complex-valued [2].

Given numerical sequences of unknown origin, it i
possible to reconstruct the iterative functio

graphically or model it with a
neural network. But if only partial sequences are ava
able e.g. only
can easily be reconstructed and it is necessary to comp
the third iterative root of , in order to get the fundamen
tal generative function of this sequence.

F x() IR IR→
f x()

f f x()() F x()≡

F

f
k

x() f f …f x()…()()= F x()≡

f F
1 k⁄

= F

F x() x 1+= ⇒ f x() x 1 2⁄+=

F x() x
2

= ⇒ f x() x
2

=

F x() x
2

1+= ⇒ f x() ?=

F : IR
n

IR
n→

F
1 k⁄

g f x()() F x()≡ f g, min→

f f x()() G x()≡ F G, min→

F f
f F

xn 1+ λxn 1 xn–()=

xn λ 3.57>

λ

xn

f : IR IR xn→ f xn 1–()=

n 3 6 9…, ,= F : IR IR xn→ F xn 3–()=

F
f

d
r

s

s
.
c-

ry
c-
a-
al

ct
of
an
re
is
le
to
em
di-
-

g
a-

e
ts,
-

1.2.2 Steel Processing

Industrial processes are often n-fold repetitions of some
simple process, too. Figure 1 shows an example of a steel
mill where stripes of metal are rolled in a sequence of up
to seven identical stands from their initial thickness of
some centimeters down to some millimeters.

Due to technical reasons it is impossible to measure some
parameters like the profile of the stripes in between the
stands - but that knowledge is necessary for optimal pro-
cess control. Therefore a model of a single stand must be
generated from the measured values of the incoming and
outgoing material and the fact that the transformation oc-
curred in a number of identical steps. The whole process
line can successfully be modeled by a neural network [3],
thus the function is well known but computation of in-
ternal values currently relies on mathematical models
which lack the performance of an adaptive net.

A desired model-free method to simulate a single stand
and retrieve the internal state of the steel needs to com-
pute something like the n-th functional root of the whole
array. This task is complicated by some additional pa-
rameters like the rolling pressurep which is set to differ-
ent values for each stand:

(7)

We call theparametrized iterative root of .

Figure 1: Model of a steel mill: A block of steel with known
propertyxin is transformed byn stands to a stripe with the meas-
urable propertyxout. Intermediate valuesxi are not accessible,
but important to know for optimal process control. System iden-
tification with neural networks can easily modelF but revealing
a description of a single standf is equivalent to computing pa-
rametrized iterative roots ofF.

2 Designing a Backpropagation
Network to solve Iterative Roots

Due to the fact that there are currently no standard numer-
ical algorithms available to solve these problems, we
have developed a method which uses MLPs to compute
an approximation of iterative roots from given data.

2.1 Defining the Topology

Given a data set where , it is a standar
problem for neural networks to find an approximation fo

. Usually a MLP with one hidden layer (1-N-1, N
denotes the number of hidden units) is sufficient, if it ha
enough neurons.
Performing the same task with a 1-N-1-N-1 network a
shown in Figure 2 will of course yield a similar result
Such a network could be interpreted as a chain of fun
tions , where the first 1-N-1 subnet
represents and the second one . To allow arbitra
outputs of the single layer neurons, their activation fun
tions are set to identity. But of course there is yet no re
son why and should have any other speci
relationship.

2.2 Coupling the Weights

If we want to have then each layer has to a
identically. To achieve this, the corresponding weights
the subnets have to be identical. Backpropagation c
easily be modified in a way, that the same weights a
shared between several connections (), which
a common practice in time-delay networks for examp
[4]. But because of better training performance and
handle the cases described by equation (4), we force th
to approach each other slowly instead, by adding an ad
tional term to the standard delta-rule [5] for weight-up
date:

(8)

where is the current value of the correspondin
weight within the other layer and an user definable p
rameter, we callcoupling factor.

This is equivalent to the addition of a penalty-term, th
sum of the squared differences of corresponding weigh
to the error function, but easier to implement and com
pute in this local manner.

Figure 2: A MLP with a 1-N-1-N-1 topology splits the net
function F in two separable parts,f andg. Coupling all corre-
sponding weights forcesf andg to become identical and thus a
functional root ofF.

F

f
xi

xout F xin p1...pn,() f ... f f xin p1,() p2,()... pn,()= =

                

x2x1
xout

         

f 1 f 2

F

    

f n

xin

Measuring
instrument

p1 p2 pn

f F

x y,() y F x()=

F x()

y F x() g f x()()= =
f g

f g

f x() g x()≡

wi wj=

wiδ wi backprop α wj wi–()+δ=

wj
α

         

          

f g

F

x F x()

f x()

g f x()()

α

wi wj

d
es
-

e-

-
e
ch

d
on
f

l

2.3 Training the Net

We found it most successful to cut the training process in
two steps. First, the network is trained with standard
backpropagation without weight coupling () until
it reproduces with appropriate accuracy. Then the
factor is slowly increased while keeping the whole net
approximating F continuously.

Setting immediately often results in a failure of
the net to learn , especially when working with higher
order iterations, i.e. using networks with many single
neuron layers. These bottlenecks strongly inhibit the er-
ror backpropagation and the fewer degrees of freedom
implied by that “hard” weight coupling seem to disturb
the learning ability additionally.

2.4 Retrieving the Results

Now only the first (1-N-1) subnet is needed to compute
the desired functional root . It can be extracted from
the whole net and be used to tabulate the function or serve

as a subroutine in another application.

3 A simple Demonstration
Figure 3 shows how the network from Figure 2 is traine
with a data set consisting of 11 evenly spaced x-valu
from the interval [0..1] and corresponding y-values com
puted with the function . Not surpris-
ingly, this net with its 1-5-1-5-1 topology is able to
approximate on the whole interval very well.

But evaluating the transfer functions of the subnets r
veals completely different and . In fact, every new
training with different weight initialization yields a com-
pletely altered internal behavior of the net. But after turn
ing on weight-coupling, i.e. setting to a small positiv
value, the corresponding weights of the subnets approa
each other slowly until and become identical. An
because the whole net still does a good approximati
of the data, is now an estimate of the functional root o

.

α 0=
F x()

α

α 1=
F

f x()

y F x() x
2

1+= =

F x()

f g

α

f g
F

f
x

2
1+

Figure 3: The effect of weight coupling. The trained MLP withα = 0 from Figure 2 has learned the functionF(x) = x2+1 very well
but the subnetsf andg behave quite different (a). After turning on weight coupling, the accuracy of F first decreases (b), butf andg
approach each other (c). Finally the approximation ofF is satisfying again andf andg are identical now, thus representing the functiona
root ofF (d).

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

2

2.5
No Sharing

a)

F x()
g x()

f x()

no coupling

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

2

2.5
Sharing 5 Epochs

b)

F x()

g x()

f x()

coupling 5 epochs

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

2

2.5
Sharing 1000 Epochs

c)

F x()

g x()

f x()

coupling 100 epochs

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

2

2.5
Sharing 10000 Epochs

d)

F x()

g x()

f x()

coupling 1000 epochs

n
nt
ns
f-

er
e
t-
ro-
g

in-
gy

-

.,
4 Conclusions
We have presented a method to compute iterative roots
with neural networks and demonstrated its ability to solve
numerical examples. Higher order iterations, functions
with local parameters and the performance of the method
under noise are the next steps to further develop this field
and evaluate its value for more complex applications. But
even as simple applications as the shown above might be
of broader interest as standard algorithms for computing
functional roots are not easily available.

Due to their lack of explanation capabilities, neural net-
works are mostly used for black box simulations. In con-
trast, this application utilizes the network to gainnew
knowledgeabout a system, otherwise not accessible, by
breaking the black box into smaller, easier parts which
may help to understand the underlying principles which
generated a specific data set.

A special advantage of the presented method is its sim-
plicity: The additional term of the weight update rule in
equation 8 can easily be implemented into most available
NN tools to utilize them for computing functional roots.

This field is conceptually related to the simulation of dy-
namical systems, but addresses different questions. In
conjunction with other methods it might help not only to
reproduce a given dynamical system but to do so on a fin-
er resolution. It also may help to decide, if a given time-
series could result from a closed dynamical system, as the
equations describing the temporal development of a sys-
tem can be mapped to iterated functional equations which
must possess iterative roots in order to comply with
steadiness of physical processes.

Fractal compression methods also show some similarities
to the concept of functional roots. They express complex
data, images e.g. as the result of some iterative process.
The compression task is to find a transformation which
after multiple iterations yields the desired result and is
described by as little information as possible.

There may also exist links to neuroscience. It is know
that there are strong reciprocal links between differe
cortical areas and also bidirectional vertical connectio
between cortex and thalamus. Higher cognitive tasks o
ten are not performed in a strictly feedforward mann
but activation flows forward and back through the sam
network structures several times. It should be investiga
ed if some of these tasks can be explained as iterative p
cesses and learning in the brain thus involves findin
“iterative roots”.

Acknowledgements

This research was sponsored by the German Federal M
istry of Education, Science, Research and Technolo
under grant number 01 IN 505 B.

References

[1] Kuczama M., Choczewski B., Ger R.,Iterative Func-
tional Equations. Cambridge University Press, Cam
bridge, 1990.

[2] Feigenbaum M. J.,Universal Behaviour in Nonlinear
Systems. Los Alamos Science, Los Alamos, 1978

[3] Martinetz T., Protzel P., Gramckow O., Sörgel G
Neural network control for steel rolling mills. In Ka-
ppen B., Giele S.,Neural Networks: Artificial intelli-
gence and industrial application. Springer, Berlin,
1995.

[4] Waibel A., Modular construction of time-delay neu-
ral networks for speech recognition. Neural Compu-
tation 1:39-46, 1989.

[5] Rumelhart D. E., McClelland J. L.,Parallel Distrib-
uted Processing. MIT-Press, Cambridge, 1984.

	An Addition to Backpropagation for Computing Functional Roots
	Lars Kindermann
	FORWISS - Bavarian Research Center for Knowledge-Based Systems
	Am Weichselgarten 7, 91058 Erlangen, Germany
	email: lars.kindermann@forwiss.de http://www.forwiss.de/~kinderma

	Abstract
	1 Functional Roots or Fractional Iterations
	1.1 Definition
	1.2 Sample Applications
	1.2.1 Chaos Theory
	1.2.2 Steel Processing
	Figure 1: Model of a steel mill: A block of steel with known property xin is transformed by n sta...

	2 Designing a Backpropagation Network to solve Iterative Roots
	2.1 Defining the Topology
	2.2 Coupling the Weights
	Figure 2: A MLP with a 1-N-1-N-1 topology splits the net function F in two separable parts, f and...

	2.3 Training the Net
	2.4 Retrieving the Results

	3 A simple Demonstration
	Figure 3: The effect of weight coupling. The trained MLP with a = 0 from Figure 2 has learned the...

	4 Conclusions
	References
	[1] Kuczama M., Choczewski B., Ger R., Iterative Functional Equations. Cambridge University Press...
	[2] Feigenbaum M. J., Universal Behaviour in Nonlinear Systems. Los Alamos Science, Los Alamos, 1978
	[3] Martinetz T., Protzel P., Gramckow O., Sörgel G., Neural network control for steel rolling mi...
	[4] Waibel A., Modular construction of time-delay neural networks for speech recognition. Neural ...
	[5] Rumelhart D. E., McClelland J. L., Parallel Distributed Processing. MIT-Press, Cambridge, 1984.

