
Computing Iterative Roots with Second Order Training Methods

Lars Kindermann Peter Protzel

reglos.com Dept. of Electrical Engineering and Information Technology
kindermann@reglos.com Chemnitz University of Technology, Germany

www.reglos.com/kindermann peter.protzel@e-technik.tu-chemnitz.de
www.infotech.tu-chemnitz.de/~proaut

Abstract

Iterative roots are a valuable tool for modeling and ana-
lyzing dynamical systems. They provide a natural way to
construct a continuous time model from discrete time da-
ta. However, they are in most cases extremely difficult to
compute analytically. Previously we have demonstrated
how to use neural networks to calculate the iterative
roots and fractional iterations of functions. We used a
special topology of MLP’s together with weight sharing.
This paper shows how adding a regularization term to the
error function can direct any backpropagation based
training method to the same result but in a fraction of ep-
ochs when using advanced 2-nd order learning rules.

1 Iteration = Discrete Time Evolution

Among lots of other applications iterative roots of func-
tions are the key for embedding time discrete systems
into continuous time or changing the time base.

Suppose you have collected market data on a monthly
base and have created a pretty good neural model for pre-
dicting next month sales of your company. But due to an
increased business speed you are asked to make predic-
tions now on a weekly base. Will you have to wait until
you have sampled enough data again each week for train-
ing a weekly model? Or will you just interpolate the
weeks from a month? But for nonlinear dynamics this is
pretty difficult without knowing the equations of the sys-
tem. But it is possible to compute this in a model free way
indeed!

The dynamics of discrete time systems is best described
in terms of iteration. The time evolution of a system is de-
scribed by a function

 are vectors in the state-space of the system. This may
also take the form of a difference equation

, but it can easily converted to the
form above. Computing the trajectory of the system from
a starting point means just applying over and over

again, is the time-one mapping function of the system.
Using a well known notation, can be writ-
ten as . Then the state of the system at time

is given by

 is called the t-th iteration of . The common notation
for the inverse of a function fits nicely into this pic-
ture too: Computing the previous state of the system at
time means applying the inverse of to :

 (1)

Let denote the identity, which also fits nicely
into this picture.

Thus is the time evolution operator for all integer times
.

Remark: From chaos theory we know that iterating even
pretty simple functions can exploit extremely complex
behavior, like the logistic equation
which is the schoolbook example for chaos.

2 Iterative Roots

Iterative roots are the extension of the roots of numbers
to the domain of function spaces and they are defined in
terms of a functional equation:

Definition: Given an arbitrary mapping of a set to it-
self, a solution of the equation

, is called a functional or iterative root of .

In general, for the equation

the solution is called a n-th iterative root of and the
formal notation is used. Similar a solution of
the equation

xt 1+ f xt()=

x

xt 1+ xt xt()∆+=

x0 f

f
x2 f f x0()()=

x2 f
2

x0()=
t

xt f
t

x0()=

f
t

f
f

1–

t 1–= f x0

x 1– f
1–

x0()=

f
0

x() x=

f
t

t

xt 1+ axt 1 x– t()=

f S
ϕ

ϕ ϕ x()() f x()=

x S∈ f

ϕn
x() f x()=

ϕ f
ϕ f

1 n⁄
=

http://reglos.de/kindermann
http://www.infotech.tu-chemnitz.de/~proaut/

can be written as , a fractional iteration of
.

This extends the common notation of iterates or „powers“ of
functions from the well known integer exponents to arbitrary
fractional numbers.

The mathematics of iterative roots is rather difficult. They
appeared first 1815 in the Babbage equation

which solutions are called „the roots of identity“. This simple
case of an iterative root already demonstrates that there is no
uniqueness attached to a solution: In addition to the obvious
solution there are infinitely many other solutions,
e.g. . Very often solutions depend on some ar-
bitrary function.

On the other hand the question for the existence of iterative
roots of a given function turns out to give the surprising an-
swer, that „almost no“ function posesses iterative roots,
(mathematically spoken): the subset of iterates is nowhere
dense in most function spaces, but proofs are often difficult.

Something is known for real valued functions, e.g continuous
and monotonically rising functions have continuous and
monotonic roots of all orders. In general, each case has to be
examined carefully.

A 2001 survey article on the current state of the research on
iterative roots states „...one should not expect results on iter-
ative roots in a general situation. In fact, even roots of poly-
nomials are not described. Even worse: we do not know
whether every complex cubic polynomial has a square
root...“

3 From Discrete to Continuous Time

In chapter 1 we described the temporal evolution of a discrete
time dynamical system by terms of iterating a self mapping
function. Sometimes the question arises if such a discrete
time dynamical system can be embedded into continuous
time. In fact this should be possible for all physical systems
as physical time is considered to be a continuous flow. (Only
philosophers and quantum mechanics may be concerned).
But in every practical case we realize every system only in fi-
nite time steps because of a technically limited sampling rate
for observations. However, the final desired description is a
continuous trajectory , or at least some differential
equation describing the dynamics, which can be integrated to
yield particular solutions.

The set of all with forms the iterative semigroup of
 and can be embedded into what is called the continuous it-

erative semigroup of with the notation with real if
these two conditions apply:

 for all and integers

and conforms to the translation equation

As it is easily seen, the fractional iterates of are behaving
exactly this way and thus are a possible way of introducing
continuous time to iterated maps.

Back to our problem from the beginning, if our model for the
sales of next month is given by some function, we have to
take the 4-th root of this model to get the one week model.

4 Computing Iterative Roots with
Neural Networks

Neural networks are able to approximate any given (non-
pathologic) function from example data. They are often
called universal approximators. If the network from figure 1
is trained as a whole to approximate the function and at
the same time all the weights from the both subnets are kept
equal then each subnet represents exactly the iterative root of

. Using backpropagation as the basic learning method two
additional ways to enforce the regularization task were suc-
cessfully demonstrated so far: Training only the second sub-
network and continuously copying the weights to the first
net. If this process converges, both subnets are identical and
represent the root of . An alternate method implements a
weight sharing mechanism between the corresponding
weights of the two subnets which are otherwise treated like a
normal MLP. This method converges at the same time to the
target function and equal subnets. A mayor drawback of both
methods is that higher order learning rules which are proven
to give much better results than vanilla backpropagation,
cannot be used because of the additional weight changes.

Figure 1: A MLP computes the iterative roots of

φn
x() f

m
x()=

φ x() f
m n⁄

x()=
f

ϕ2
x() x=

ϕ x() x=
ϕ x() a x–=

f

x t x0,()

f
n

n N∈
f

f
t

x() t

F
t

x() f
t

x()= x t Z∈

F

F
t1 F

t2 x()() F
t1 t2+

x()=

f

f x()

f

f

ϕ ϕ

x

ϕ x()

f x()

          

f

sh are
w eigh ts

f

The same arguments can be used for n-th iterative roots,
where a composition of networks is trained towards .
Taking then a row of only of these sub-networks, this is
equivalent to the fractional iteration .

Figure 2: Computing a fractional iterate

5 Regularization by Introducing an Error Term

When the regularization task of making both subnetworks as
similar as possible, is formulated as an error term which
adds to the usual approximation error on the training
data, most backpropagation based gradient descend algo-
rithms can successfully handle this problem without further
modifications.

Let denote the -th weight in the -th subnet. Goal is to
make all corresponding weights as equal as possible

 for all . The index has to include all
weights of a subnet, including biases.

An appropriate error measure is the sum squared error of all
corresponding weights.

=Number of weights per subnet, =number of subnets.

There are pairs of corresponding subnets, the
mean squared error of two corresponding weights is

Another way is to use the sum of the variances of correspond-
ing weights across all subnets. Starting with the mean value
of corresponding weights

the emperical variance is given by the following term:

To normalize over all weights divide by the number of
weights:

To construct the total error function a parameter
may be introduced which gives a choice between

To force the network for a minimal approximation error of
set , if mainly equal subnets are desired a small is
appropriate. This choice is useful if there exist no exact iter-
ative roots of .

The gradient necessary for backpropagation is then given by

with e.g.

Nothing else has to be changed in the backpropagation algo-
rithm and derived methods, like quasi Newton gradient de-
scend.

6 Example

The method is demonstrated on the fractional iterations of
, because they can also be calculated analytically

to compare the results. The inverse is calculated most easily
with the same network just by exchanging inputs and outputs
in the training data. The MLP consists of 8 subnetworks with
an (1-8-1) structure, linear input and output neurons and sig-
moid hidden units. Training method is quasi newton back-
propagation. This results in an approximation error of
for . Training data consists of 100 pairs from the in-

n f
m

f
m n⁄

ϕ f
1 n⁄

=

x

ϕm
f
m n⁄

=

f x()

  

1 m n

            
f

φ f
m n⁄

=

Ereg
Eapp

E Eapp Ereg+=

wi j, i j

wi j, wi k,– 0→ j k, i

m n

Eregsum wi j, wi k,–()2

k j 1+=

n

∑
j 1=

n 1–

∑
i 1=

m

∑=

n n 1–() 2⁄

Eregmean

Eregsum

mn n 1–()
2

-------------------------=

wi
1
n
--- wi j,

j 1=

n

∑=

si
2 1

n
--- wi j, wi–()

2

j 1=

n

∑=

Eregvar
1
m
---- si

2

i 1=

m

∑=

0 α 1< <

E αEapp 1 α–()Ereg+=

f
α 1→ α

f

∂E
∂wi j,
------------ α

∂Eapp

∂wi j,
--------------- 1 α–()

∂Ereg ...

∂wi j,
------------------+=

∂Eregmean

∂wi j,
-------------------------- 4

mn n 1–()
------------------------ wi j, wi k,–()

k 1=

n

∑=

f x() x
2

=

10
6–

f x() x y,

terval . The network usually converges to the solution
within 400 training epochs.

Figure 3: The fractional iterates of

7 Conclusions

The new method for computing iterative roots mean a signif-
icant advantage for applications over the weight sharing
method. The table demonstrates the gain of performance
compared to the older procedures. And because of the diffi-
cult analytic treatment and a lack of other available numeri-
cal methods so far, this should be valuable for all who are
facing the problem of calculating iterative roots of functions.

References

[1] C. Babbage, Essay towards the Calculus of functions.
Phil. trans. Royal Soc. London 105 (1815), 389-424

[2] Kuczama M., Choczewski B., Ger R., Iterative Function-
al Equations. Cambridge University Press, Cambridge,
1990

[3] K. Baron & W. Jarczyk, Recent results on functional
equations in a single variable, perspectives and open
problems. Aequationes Math. 61. (2001), 1-48

[4] G. Targonski, An Iteration theoretical approach to the
concept of time. Colloques Internationaux du C.N.R.S.
229, Transformations ponctuelles et leurs applications,
Toulouse (1973), 259-271

[5] G. Targonski, Topics in iteration theory. Vandenhoeck
und Ruprecht, Göttingen 1981

[6] G. Targonski, Progress of iteration theory since 1981.
Aequationes Math. 50 (1995), 50-72

[7] H. Kneser, Reelle analytische Lösungen der Gleichung
ϕ(ϕ(x)) = ex und verwandter Funktionalgleichungen. J.
reine angew. Math. 187 (1950), 56-67

[8] R.E. Rice, B. Schweizer & A. Sklar, When is f(f(z)) =
az2+bz+c for all complex z? Amer. Math. Monthly 87
(1980), 252-263

[9] M.C. Zdun, Continous iteration semigroups. Boll. Un.
Mat. Ital. 14 A (1977), 65-70

[10] Kindermann L. Computing Iterative Roots with Neural
Networks. Proceedings of the Fifth Conference on Neural
Information Processing, ICONIP’98 Vol. 2:713-715,
1998

0 1,[]

f x() x
2

=

		2002-02-05T13:19:58+0900
	Lars Kindermann

